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A reductive perturbation technique is used to derive modified Korteweg-deVries 
(KdV) equations with different degrees of isothermality in a plasma, in order to 
study the existence and behavior of ion-acoustic solitary wave propagation 
ingoing in a multicomponent relativistic plasma. The solutions of the KdV 
equations are obtained. It is found that the presence of multiple ions and electrons 
in the relativistic plasma causes a different behavior regarding the formation of 
solitons in plasmas. 

1. I N T R O D U C T I O N  

Washimi and Taniuti (1966) first showed how solitary waves propagate  
in a simple plasma by deriving a nonlinear partial differential equation in 
the form of  a Korteweg-deVries (KdV) equation. Later a number  of  authors 
(Taniuti and Wei, 1968; Su and Gardner,  1969; Schamel, 1973; Das and 
Tagare, 1975; Das, 1979; Tran and Hirt, 1974; Jones et al., 1975; Goswami 
and Buti, 1976; Patraya and Chegeleshvilli, 1977; Abrol and Tagare, 1979) 
studied theoretically the existence and behavior  of  the solitons in multicom- 
ponent  plasmas. Ikezi et al. (1970), Ikezi (1978), Nakamura  (1982) and 
others have made significant contributions through their experimental  
investigations. Murthy et al. (1984) considered a plasma that includes 
multiple electrons and showed that the soliton behavior  in the plasma 
exhibits fascinating results as compared to the plasma with multiple ions. 
Very recently, Das and Karmakar  (1988, 1990) further analyzed the solitary 
waves in generalized mul t icomponent  plasmas and showed that the propaga-  
tion of  solitary waves could be of interest for laboratory plasmas. But all 
the observations have been limited to a particular type of plasma and very 
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few results have been derived in relativistic plasmas. Das and Paul (1985) 
and Das et al. (1988) observed the propagation of solitary waves in relativis- 
tic isothermal plasmas and showed that the relativistic effect causes an 
ion-acoustic wave, accounting for a precursor due to which there is the 
possibility of breaking the soliton into many more solitons. They showed 
in a plasma with nonisothermal electrons that the presence of the relativistic 
effect does not exhibit such a peculiar phenomenon. However, the breaking 
up of the solitons could be avoided through the reduction of the nonisother- 
mality of the plasma and we can derive the Kdv type soliton. Very recently 
Das et al. (1990) investigated the soliton behavior in a relativistic plasma 
with negative ions. They showed that the behavior of the solitons in a 
relativistic, weakly nonisothermal plasma in the presence of negative ions 
is different from the earlier study. They derived the modified Kdv equation 
and its solution and showed that the negative ions with relativistic effect 
modify the existence of the ion acoustic waves. Therefore, the possibility 
of getting compressional and rarefactive solitons in the plasma is significant. 

Though the relativistic effect is small in the laboratory, if a high-power 
electromagnetic wave (power -10~2-14W/cm 2) is made to propagate 
through a plasma, the velocities of electrons and ions become relativistic. 
In nature, during solar bursts the velocity of the ejected plasma particles 
becomes weakly relativistic ( -  1000 km/sec). Therefore, in the present paper 
we are interested in the soliton behavior in relativistic plasmas that are 
isothermal, nonisothermal, and weakly nonisothermal. Our investigations 
show that the numerical results on the variation of the two-temperature 
electron ratio/3 and the relativistic effect ratio Vo/c especially exhibit new 
features of the solitons. By reducing the nonisothermal effects, we obtain 
a modified KdV equation and show that the soliton behavior differs from 
the earlier results. 

2. MATHEMATICAL FORMULATION 

We consider a collisionless unmagnetized relativistic plasma that 
includes two-temperature nonisothermal electrons. Following Das et aL 
(1990), we write the equation of continuity, the equation of motion for the 
adiabatic ions, and the Poisson equation for unidirectional propagation as 

0t~ a 
(2.1) 

0 ~ +  z5 O~= _ O____~ (2.2) 
Or 02 a:~ 

0-~4; 
_----v --- nc, l + tiez - ~ (2.3) 
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where ~ = ni/no. The dimensionless parameters are defined as 

~0 = eO(KTe) -1, zSv = ~5(1 - 152/g2) -1/2, 

g= c (KTe/mi )  -1/2, ~ = vi(KT~/mi)  -1/2, (2.4) 

,2 = x(KTe/4cre2no) 1/2 ~.~_ t(4rre2no/mi)l/2 

where v~ is the velocity of  the ions having the mass m~ and the number 
density hi. Here r/e~ and Tea (o~ = 1, 2) stand for the number density and 
kinetic temperature of the electrons, no is the ion-number density in the 
equilibrium state of the plasma. 4, is the electrostatic potential and K is 
the Boltzmann constant. 

Following Das et al. (1990), we introduce the nonisothermality of the 
plasma through the electron densities as 

4 [ 4~ \ s / 2 + l  2 + . . .  
fie1 = ix + v ~  3 b l \ l .L+v~]  2 

(2.5) 

fie2 v 1-t r 4b2(  r ~ + 1 (  ~4, ~ .~_ - ~ . .  o 

/ x+v~  3 \ / x + v / 3 ]  2 \ / x + v r  

where b~o2 are arbitrary constants depending on the electron temperatures 
through r = Te~/Te2. 

Further, the following boundary conditions at Ix[-~ oc are assumed: 

(i) he1 ~ ~ and he2--> ~'~ where ~ and v are the initial densities of the 
low- and high-temperature electron components. 

(ii) ~ V o .  
(iii) The overall charge neutrality condition is always maintained in 

the plasmas and is given by 

/.~ + v = 1 (2.6) 

2.1. Derivation of KdV Equation for Isothermal Electrons 

In order to derive the KdV equation, we use the new stretched space- 
time variables s ~ and r given by the following relations: 

~= EJ/Z(x--At), ~'= es/2t (2.7) 

where e is the expansion parameter and A is the unknown phase velocity 
of  the ion-acoustic wave to be obtained later. 

First we consider the case of the isothermal plasma by putting b~.2 = 0 
in the expressions (2.5). The plasma parameters (we omit the bars hereafter) 
are now expanded asymptotically as a power series in e as 

= ~ + + e  2 w + ' ' '  (2.8) 

4', 4'_~ 
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Substituting (2.7) and (2.8) in the system of equations (2.1)-(2.3) and then 
collecting the lowest order terms in e gives the following relations: 

( A  - -  t~o)n  1 = Vl 

(X - Vo)(1 + 3v~/2c2)v, = ~b, (2.9) 

YII : (~1 

from which the phase velocity a of the wave is obtained as 

)t = Vo+ (1 +3v~/2c2) -'/2 (2.10) 

The same phase velocity )t is found as was obtained by Das et al. 
(1990), showing that the presence of multiple electrons does not have any 
effect on the phase velocity. 

Now, the next higher order in e gives the following relations: 

Oft 2 On I O Or2 
(A -Vo) (n,v,)  - (2.11) 

of 07- of a~ 

. 3 v ~ ' ~  Ovl roy1 Or1 
l + ~ c 2 ) - ~ - - 3 ( A - v ~  c 2 0f 

.3vg\ov2 
(A-Vo) 1+~c2) O( 

3vg) Or_.__!= Od~2 (2.12) 
+ 1+77 v'of -o--7 

024,, 1 (~  + ,,~2) ~ _  n~ (2.13) 
o f  2 = 4,2 2 (~  + v/3) 2 

Eliminating n2, v2 from the relations (2.11)-(2.13) and using the first- 
order results (2.9)-(2.10), we derive the KdV equation in the following form: 

0q~---!+ A~, 0~1 + B 03~b~ = 0 (2.14) 
07- 0f  0f 3 

where 

A =  2 3 0 x + v f l )  e (A-v0)  3 

)t  - -  D O tT~m 

" 2 

In order to get the solitary wave solution of  equation (2.14), we 
introduce the new variable X - ~ -  Ur with respect to a frame moving with 
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the velocity U together with the following boundary conditions at IX] ~ co: 

(i) 4h ~ O. 
(ii) d4)J dx ~O. 

(iii) d2 c~]/ dx2-->O. 

Therefore, following Das et al. (1990), we obtain the stationary solution 
of  the KdV equation (2.14) in the following form: 

cb, = 4o Sech2(x/6,)  (2.15) 

where ~bo = (3 U / A )  is the amplitude and 81 = 2 ( B / 0 )  1/2 is the width of the 
solitary wave. 

2.2. Derivation of KdV Equation for Nonisothermal Electrons 

Here we introduce the stretched coordinates ~: and 7. given by the 
relations 

= E 1 / e ( x - - } t t ) ,  7 . =  E3/4t  (2.16) 

where e and h bear the same meaning as defined earlier. 
In order to derive the case of the nonisothermat plasma, we have taken 

b~.2 # 0. As before, we now expand the plasma parameters asymptotically 
in a different form in powers of e as 

= VO + +E3/2 V2 + +''" (2.17) 

0 (~b, q~3 

Substituting the relations (2.16) and (2.17) in the basic equations 
(2.1)-(2.3) and comparing the lowest order terms in e, we obtain the same 
phase velocity A, without any changes as compared to the earlier expression 
obtained in (2.10). 

Now, the next higher order in e yields the equations 

. an2 On1 Or2 (2.18) 
07. 

. 3 v g 1 - ' O 4 h  (2.19) 
( a - V o )  a~ 07. 

a2~, 4 [ b,tz + b2vfl3/2.'~ 
(2.20) 
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Following the usual procedure and after a mathematical manipulation, 
we obtain a single nonlinear differential equation in ~ in the form of the 
following KdV equation: 

where 

O(9__.Z + C[r 0~b~+ B 034,' = 0 (2.21) 
Or a~ a~ :3 

C _  

and B was defined earlier. 

( a  - Vo)( b~t~ + b=v/3 ~/~) 
(t~ + ~,/3)3/2 

The corresponding solution of the KdV equation (2.21) is obtained as 

~bl ----- q~0 Sech4(x/t~2) (2.22) 

where ~bo = 225 U2/64C 2 is the amplitude and 82 = 4(B/U) 1/2 is the width 
of  the ion-acoustic solitary wave. 

We now analyze the existence and behavior of the KdV type solitons. 
The characteristic variation of  soliton features is shown numerically in the 
figures. The amplitude variation with the electron-temperatures ratio is 
shown in Figure 1 and is compared with the result for simple plasmas. The 
dotted lines represent the characteristics of  the solitary waves in a nonrela- 
tivistic multiple electron plasma. Figure 1 shows that the behavior of  the 
ion-acoustic waves for the relativistic and nonrelativistic multiple electron 
plasmas in the isothermal case are of the same nature and shows little 
decrease in the amplitude variation. Similar characteristics is also observed 
in the case of  a nonisothermal plasma. Figure 2 shows the variation of  the 
amplitude ~b0 with the relativistic effect Vo/C in the isothermal and non- 
isothermal plasmas. This observation indicates the identical behavior of  the 
solitary waves at/3 = 0.2 and/3  = 0.5. The figure shows that the amplitude 
~bo of  the solitary waves increases with increasing values of  Vo/C, indicating 
that the amplitude could be very large at a higher value of Vo/c and as such 
the solitons will break down and the formation of the solitary waves will 
not be possible. At/3 = 0.5, the amplitude of the solitary wave is less than 
that obtained at/3 = 0.2. This implies that the existence of  the solitary waves 
is possible for higher values of  Vo/C and/3. Thus, the present observation 
indicates that the presence of the multiple electron temperature has an 
important role in the existence of  the ion-acoustic waves. 

The variation of  the potential ~bj of the solitary wave with the widths 
81 and 62 is shown in Figures 3 and 4, and we see the same nature in both 
the isothermal and nonisothermal plasmas. Here the potential of the solitary 
wave decreases with the increasing values of  the width 8, of  the solitary 
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wave. In the figures, the dotted lines indicate the behavior of  the potential 
with the widths of  the solitons in a simple relativistic plasma. In the present 
study the potential ~bl decreases along a curved path, while the earlier study 
showed that the path is a straight line. Figures 3 and 4 show that the potential 
is higher at/3 = 0.2 than that for/3 = 0.5. The present study points that the 
value of  the potential decreases for higher value of/3. 

Since we know from our earlier results that a weak nonisothermality 
leads to a different behavior of the solitons in plasmas, we consider the 
case of  weak nonisothermality. In this case the parameters bl and b2 arising 
due to the nonisothermality of the plasma are assumed to be small and 
we consider bl.2 = e|/2bl,2, where b l , 2~0 .  The scheme of the perturbation 
expansion of  the field variables and stretching coordinates will be different 
as compared to the case of  nonisothermality. Here we consider the stretched 
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c o o r d i n a t e s  a n d  the  e x p a n s i o n  o f  the  p a r a m e t e r s  as in  the  case  o f  i s o t h e r m a l  
p l a s m a s ,  as g iven  in e x p r e s s i o n s  (2.7) a n d  (2.8).  

F o l l o w i n g  a s i m i l a r  p r o c e d u r e ,  we first  get  the  p h a s e  ve loc i ty ,  w h i c h  
is the  s a m e  as  t ha t  d e f i n e d  in (2.10),  a n d  f ina l ly ,  the  nex t  h i g h e r  o r d e r  in  
e g ives  the  m o d i f i e d  K d V  e q u a t i o n  as 

o~b__21, t - 
83~bl 

[Aq~, + C((h(l~) ~/2] v.,.~ + B = 0 (2.23) 
0r o r  O~ :3 
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where 

A-Vo [3 ,u, + v] 32 3~2o (A _ Vo)3 ] 
A= 2 (p, + v/3) 2 

B and C are similar to those defined earlier. 

The corresponding solitary wave solution is obtained in the following 
form: 

= r  4c +{ 16C2+ A "~l/2cosh(X'~l 2 (2.24) 

w h e r e  ~53 = 2 ( B / U )  1/2 is the  w i d t h  o f  the  so l i tary  w a v e .  
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Here the basic difference from the earlier KdV-type soliton solution is 
that the solution depends on the values of C and A. Multiple electrons 
contribute to the formation of the ion-acoustic solitary waves. From 
expression (2.24) we have an amplitude ~b~ which is quite different from 
the result derived in Das et al. (1990). But the width 83 is unchanged and 
this plays a significant part in the formation of solitons with various ampli- 
tude variations arising in isolation with the plasma parameters. Figure 5 
shows the variation of the potential with the width of the solitary waves in 
a weakly nonisothermal plasma and the dotted line indicates the variation 
of the potential without the effect of the multiple electron temperatures ratio. 

The plot in Figure 5 shows that the potential ~bl decreases with increas- 
ing value of the width 83 of the ion-acoustic waves, whereas in the earlier 
work (Das et al., 1990), the potential ~bl decreases, showing a drastic change 
in the character of the solitary waves in a multiple temperature electron 
plasma. 

3. CONCLUSIONS 

In the present study we have investigated ion-acoustic waves, taking 
account of the combined effects of multiple electron temperatures and the 
relativistic effect. After deriving the KdV equations for isothermal, non- 
isothermal, and weakly nonisothermal electron plasmas, we were able to 
show that the solutions for the KdV-type solitons are quite different from 
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the results obtained by Das et aL (1990). Different electron temperatures 
play a dominating role for the formation of the solitary waves. The numerical 
results show that the range of  the multiple electron temperature rat io/3 is 
limited and the ampli tude of  the ion-acoustic waves depends on the effects 
of /3  and vole. Thus, we conclude that solitons with isothermal as well as 
the nonisothermal multiple electron temperatures in the presence of the 
relativistic effect might be observed experimentally, revealing fascinating 
soliton behavior  in a plasma. One has to be careful about the choice of  the 
range of  the two electron-temperature rat io/3 as well as the values of  vo/c 
in order to observe the prominent  characteristics of  the solitons in a plasma. 
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