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KdV-Type Solitons in Multicomponent
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A reductive perturbation technique is used to derive modified Korteweg-deVries
(KdV) equations with different degrees of isothermality in a plasma, in order to
study the existence and behavior of ion-acoustic solitary wave propagation
ingoing in a multicomponent relativistic plasma. The solutions of the KdV
equations are obtained. It is found that the presence of multiple ions and electrons
in the relativistic plasma causes a different behavior regarding the formation of
solitons in plasmas.

1. INTRODUCTION

Washimi and Taniuti (1966) first showed how solitary waves propagate
in a simple plasma by deriving a nonlinear partial differential equation in
the form of a Korteweg-deVries (KdV) equation. Later a number of authors
(Taniuti and Wei, 1968; Su and Gardner, 1969; Schamel, 1973; Das and
Tagare, 1975; Das, 1979; Tran and Hirt, 1974; Jones ef al., 1975; Goswami
and Buti, 1976; Patraya and Chegeleshvilli, 1977; Abrol and Tagare, 1979)
studied theoretically the existence and behavior of the solitons in multicom-
ponent plasmas. Ikezi et al (1970), Ikezi (1978), Nakamura (1982) and
others have made significant contributions through their experimental
investigations. Murthy et al. (1984) considered a plasma that includes
multiple electrons and showed that the soliton behavior in the plasma
exhibits fascinating results as compared to the plasma with multiple ions.
Very recently, Das and Karmakar (1988, 1990) further analyzed the solitary
waves in generalized multicomponent plasmas and showed that the propaga-
tion of solitary waves could be of interest for laboratory plasmas. But all
the observations have been limited to a particular type of plasma and very
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few results have been derived in relativistic plasmas. Das and Paul (1985)
and Das et al. (1988) observed the propagation of solitary waves in relativis-
tic isothermal plasmas and showed that the relativistic effect causes an
ion-acoustic wave, accounting for a precursor due to which there is the
possibility of breaking the soliton into many more solitons. They showed
in a plasma with nonisothermal electrons that the presence of the relativistic
effect does not exhibit such a peculiar phenomenon. However, the breaking
up of the solitons could be avoided through the reduction of the nonisother-
mality of the plasma and we can derive the Kdv type soliton. Very recently
Das ef al. (1990) investigated the soliton behavior in a relativistic plasma
with negative ions. They showed that the behavior of the solitons in a
relativistic, weakly nonisothermal plasma in the presence of negative ions
is different from the earlier study. They derived the modified Kdv equation
and its solution and showed that the negative ions with relativistic effect
modify the existence of the ion acoustic waves. Therefore, the possibility
of getting compressional and rarefactive solitons in the plasma is significant.

Though the relativistic effect is small in the laboratory, if a high-power
electromagnetic wave (power ~10'""'*W/cm?) is made to propagate
through a plasma, the velocities of electrons and ions become relativistic.
In nature, during solar bursts the velocity of the ejected plasma particles
becomes weakly relativistic (~1000 km/sec). Therefore, in the present paper
we are interested in the soliton behavior in relativistic plasmas that are
isothermal, nonisothermal, and weakly nonisothermal. Our investigations
show that the numerical results on the variation of the two-temperature
electron ratio B and the relativistic effect ratio V,/c especially exhibit new
features of the solitons. By reducing the nonisothermal effects, we obtain
a modified KdV equation and show that the soliton behavior differs from
the earlier results.

2. MATHEMATICAL FORMULATION

We consider a collisionless unmagnetized relativistic plasma that
includes two-temperature nonisothermal electrons. Following Das et al
(1990), we write the equation of continuity, the equation of motion for the
adiabatic ions, and the Poisson equation for unidirectional propagation as

on_ 3
—+— (/i5) =0 2.1
37 oz (70) (2.1)
9y, 590, 94 (2.2)
of 9% ox

e

z=ﬁt’l+ﬁe2_ﬁ (23)



KdV Solitons in Relativistic Plasmas 1101

where i = n;/n,. The dimensionless parameters are defined as
(E:eqb(KTe)_l, 5')/:5(1—'52/62)_1/2,
E = C(KTL’/ mi)'l/za 5 = vi(KTe/ mi)hl/za (2'4)
%=x(KT,/4mwe’ny) ", = t(4me’ny/ m)"?
where v; is the velocity of the ions having the mass m; and the number
density n;. Here 7., and T,, (a« =1,2) stand for the number density and
kinetic temperature of the electrons. n, is the ion-number density in the
equilibrium state of the plasma. ¢ is the electrostatic potential and K is
the Boltzmann constant.

Following Das et al. (1990), we introduce the nonisothermality of the
plasma through the electron densities as

T I 3/2 Iy 2
ﬁﬂ:M[H_«b__ﬁbl(J_) () +}
ptvB 3 mt+ B 2\ptp

T s 3/2 T 2
ﬁd:y[H Bé _éb2<_§¢_) +1(_B;f>_) +]
uw+trvB 3 pt+vB 2\t B

where b, , are arbitrary constants depending on the electron temperatures
through B8 =T,/ T,..
Further, the following boundary conditions at |x| > co are assumed:

(i) A,,» u and A, v, where u and » are the initial densities of the
low- and high-temperature electron components.
(ii) 0~ v,.
(iii) The overall charge neutrality condition is always maintained in
the plasmas and is given by

utrv=1 (2.6)
2.1. Derivation of KdV Equation for Isothermal Electrons

In order to derive the KdV equation, we use the new stretched space-
time variables ¢ and 7 given by the following relations:

E=¢e"2(x— A1), =gt (2.7)
where £ is the expansion parameter and A is the unknown phase velocity
of the ion-acoustic wave to be obtained later.

First we consider the case of the isothermal plasma by putting b, ,=0

in the expressions (2.5). The plasma parameters (we omit the bars hereafter)
are now expanded asymptotically as a power series in ¢ as

n 1 n, n,
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Substituting (2.7) and (2.8) in the system of equations (2.1)-(2.3) and then
collecting the lowest order terms in ¢ gives the following relations:

()\ - Uo)nl =0
(A —vo)(1+308/2c%) v, = ¢, (2.9)
n=a¢,

from which the phase velocity A of the wave is obtained as
A =0+ (1+308/2c%) 772 (2.10)

The same phase velocity A is found as was obtained by Das et al.
(1990), showing that the presence of multiple electrons does not have any
effect on the phase velocity.

Now, the next higher order in ¢ gives the following relations:

(A— vo)%—%—%( 1v1)=% (2.11)
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8;1 ér- ;E”:Vg)zqﬁl (2.13)

Eliminating n,, v, from the relations (2.11)-(2.13) and using the first-
order results (2.9)-(2.10), we derive the KdV equation in the following form:

3¢, 3: 3 _
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In order to get the solitary wave solution of equation (2.14), we
introduce the new variable y = £ — Ur with respect to a frame moving with
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the velocity U together with the following boundary conditions at | x| - cc:

(i) ¢,~0.
(ii) dep,/dy~0.
(iii) d2¢,/dxz—>0.

Therefore, following Das er al. (1990), we obtain the stationary solution
of the KdV equation (2.14) in the following form:

b, =¢q SeChz(X/Bl) (2.15)

where ¢, = (3U/A) is the amplitude and 8, =2(B/ U)"/? is the width of the
solitary wave.

2.2. Derivation of KdV Equation for Nonisothermal Electrons

Here we introduce the stretched coordinates ¢ and 7 given by the
relations

E=e"Hx—At), r=¢"% (2.16)

where ¢ and A bear the same meaning as defined earlier. o

In order to derive the case of the nonisothermal plasma, we have taken
b,,#0. As before, we now expand the plasma parameters asymptotically
in a different form in powers of ¢ as

n 1 n, ny ns
V]| =|0vg +e Uy +E3/2 Uy +82 U3 4. (2.17)
¢ 0 ¢ b2 &3

Substituting the relations (2.16) and (2.17) in the basic equations
{2.1)-(2.3) and comparing the lowest order terms in &, we obtain the same
phase velocity A, without any changes as compared to the earlier expression
obtained in (2.10).

Now, the next higher order in ¢ yields the equations

(/\—vo)a—g—a—7=3§ (2.18)
902 _dv 300\ "' 3¢,
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1104 Karmakar et al.

Following the usual procedure and after a mathematical manipulation,
we obtain a single nonlinear differential equation in ¢, in the form of the
following KdV equation:

9%, 12001 p 81 _
ar + Cl 1] Y +B Y= =0 (2.21)
where
C =('\ — vo)(byu + byyB>?)

(u+vB)*?

and B was defined earlier.
The corresponding solution of the KdV equation (2.21) is obtained as

&1 = ¢y Sech*(x/8,) (2.22)

where ¢o=225U°/64C” is the amplitude and 8,=4(B/U)"? is the width
of the ion-acoustic solitary wave.

We now analyze the existence and behavior of the KdV type solitons.
The characteristic variation of soliton features is shown numerically in the
figures. The amplitude variation with the electron-temperatures ratio is
shown in Figure 1 and is compared with the result for simple plasmas. The
dotted lines represent the characteristics of the solitary waves in a nonrela-
tivistic multiple electron plasma. Figure 1 shows that the behavior of the
ion-acoustic waves for the relativistic and nonrelativistic multiple electron
plasmas in the isothermal case are of the same nature and shows little
decrease in the amplitude variation. Similar characteristics is also observed
in the case of a nonisothermal plasma. Figure 2 shows the variation of the
amplitude ¢, with the relativistic effect vo/c in the isothermal and non-
isothermal plasmas. This observation indicates the identical behavior of the
solitary waves at 8 =0.2 and B =0.5. The figure shows that the amplitude
&, of the solitary waves increases with increasing values of v,/ ¢, indicating
that the amplitude could be very large at a higher value of v,/ ¢ and as such
the solitons will break down and the formation of the solitary waves will
not be possible. At 8 = 0.5, the amplitude of the solitary wave is less than
that obtained at 8 = 0.2. This implies that the existence of the solitary waves
is possible for higher values of vy/c and B. Thus, the present observation
indicates that the presence of the multiple electron temperature has an
important role in the existence of the ion-acoustic waves.

The variation of the potential ¢, of the solitary wave with the widths
8, and §, is shown in Figures 3 and 4, and we see the same nature in both
the isothermal and nonisothermal plasmas. Here the potential of the solitary
wave decreases with the increasing values of the width 8, of the solitary
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wave. In the figures, the dotted lines indicate the behavior of the potential
with the widths of the solitons in a simple relativistic plasma. In the present
study the potential ¢, decreases along a curved path, while the earlier study
showed that the path is a straight line. Figures 3 and 4 show that the potential
is higher at B =0.2 than that for B8 =0.5. The present study points that the
value of the potential decreases for higher value of 8.

Since we know from our earlier results that a weak nonisothermality
leads to a different behavior of the solitons in plasmas, we consider the
case of weak nonisothermality. In this case the parameters b, and b, arising
due to the nonisothermality of the plasma are assumed to be small and
we consider b, ,=¢'?b, ,, where b, ,>0. The scheme of the perturbation
expansion of the field variables and stretching coordinates will be different
as compared to the case of nonisothermality. Here we consider the stretched
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coordinates and the expansion of the parameters as in the case of isothermal
plasmas, as given in expressions (2.7) and (2.8).

Following a similar procedure, we first get the phase velocity, which
is the same as that defined in (2.10), and finally, the next higher order in
£ gives the modified KdV equation as

I
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where

_/\“Uo _,U~+V32 _229 3
A= [3 PESTIErA ”")]

B and C are similar to those defined earlier.

The corresponding solitary wave solution is obtained in the following

form:
4C [ 16C> AN\'? (x ]2
B Y L h( X 2.24
¢ [ISU (225(12 SU) cos 63) (2.24)

where 8;=2 (B/U)"? is the width of the solitary wave.
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Here the basic difference from the earlier KdV-type soliton solution is
that the solution depends on the values of C and A. Multiple electrons
contribute to the formation of the ion-acoustic solitary waves. From
expression (2.24) we have an amplitude ¢, which is quite different from
the result derived in Das et al. (1990). But the width &; is unchanged and
this plays a significant part in the formation of solitons with various ampli-
tude variations arising in isolation with the plasma parameters. Figure 5
shows the variation of the potential with the width of the solitary waves in
a weakly nonisothermal plasma and the dotted line indicates the variation
of the potential without the effect of the multiple electron temperatures ratio.

The plot in Figure 5 shows that the potential ¢, decreases with increas-
ing value of the width 8; of the ion-acoustic waves, whereas in the earlier
work (Das et al., 1990), the potential ¢, decreases, showing a drastic change
in the character of the solitary waves in a multiple temperature electron
plasma.

3. CONCLUSIONS

In the present study we have investigated ion-acoustic waves, taking
account of the combined effects of multiple electron temperatures and the
relativistic effect. After deriving the KdV equations for isothermal, non-
isothermal, and weakly nonisothermal electron plasmas, we were able to
show that the solutions for the KdV-type solitons are quite different from
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the results obtained by Das ef al. (1990). Different electron temperatures
play a dominating role for the formation of the solitary waves. The numerical
results show that the range of the multiple electron temperature ratio 8 is
limited and the amplitude of the ion-acoustic waves depends on the effects
of B and v,/ c. Thus, we conclude that solitons with isothermal as well as
the nonisothermal multiple electron temperatures in the presence of the
relativistic effect might be observed experimentally, revealing fascinating
soliton behavior in a plasma. One has to be careful about the choice of the
range of the two electron-temperature ratio 8 as well as the values of vy/¢
in order to observe the prominent characteristics of the solitons in a plasma.
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